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Introduction

The study of graph theory is fundamentally concerned with the structural properties of
graphs. A powerful and abstract way to analyze this structure is to understand how graphs relate
to simpler, more fundamental graphs. The theory of graph minors provides such a framework,
defining a relationship that is arguably more profound than the subgraph relationship. At its
core, a graph H is a minor of a graph G if H can be derived from G through a sequence of two
fundamental operations: edge deletion, and edge contraction.

This minor relation, defines a partial order on the set of all finite graphs. This perspective
allows us to classify entire infinite families of graphs. For instance, the set of all planar graphs is
a family that is closed under this minor operation; it is impossible to perform these operations
on a planar graph and create a non-planar one. Such families are called minor-closed families.

A primary theme in the field, and the central focus of this paper, is the characterization
of these infinite, minor-closed families by a finite set of forbidden minors. The foundational
example is Wagner’s Theorem, which re-contextualized Kuratowski’s earlier planarity char-
acterization: a graph is planar if and only if it does not contain K or K33 as a minor [9]. This
single result demonstrates the power of the minor concept. The entire infinite class of planar
graphs can be completely defined by just two forbidden structures.

The remainder of this paper is organized as follows. Section 1 introduces the minor oper-
ations and the definition of minor-closed families, along with illustrative examples. Section 2
traces the historical development from Kuratowski’s subdivision characterization of planarity to
Wagner’s forbidden-minor formulation and the emergence of Hadwiger’s Conjecture. Sec-
tion 3 examines Wagner’s Theorem and the structural ideas behind its proof. Section 4 presents
the Robertson—Seymour Graph Minor Theorem and explains the well-quasi-ordering
framework and its finite forbidden-minor corollary. Section 5 highlights some applications. A
short conclusion closes the paper.

1 Fundamental Definitions

To formalize the study of graph minors, we assume familiarity with the basic graph opera-
tions of vertex deletion (G — v) and edge deletion (G — e). These two operations, alone or in
sequence, define the subgraph relationship: every subgraph is obtained only by these deletions.
The addition of a third operation, edge contraction, is what distinguishes the minor relation
and gives it its unique power.

Definition 1.1 (Edge Contraction). For a graph G and an edge e = {u,v} € E(G), the
contraction of e, denoted G - e (or G/e), results in a new graph G’. The two vertices u and v
are merged into a single new vertex w. This new vertex w is adjacent to every vertex z that
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was a neighbor of either v or v in G (excluding v and v themselves). The resulting graph is
simplified by suppressing any loops or parallel edges that may be created.

Since any sequence of vertex and edge deletions yields a subgraph, and the minor operation
includes all deletions, it follows that every subgraph is a minor of the original graph. However,
since the subgraph relationship does not permit edge contraction, not every minor is a subgraph.
This makes the minor relation a more general and structurally powerful way to relate graphs.
With these operations, we can formally define a graph minor.

Definition 1.2 (Graph Minor). A graph H is a minor of a graph G (written H < G) if a copy
of H can be obtained from G by deleting and/or contracting edges of G.
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Figure 1: Graph minor operations
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Figure 2: K3 is a minor of Ky (contract any edge)

1.1 Example of Minors

To build intuition for minors, we consider one of the most classical examples: the Petersen
graph Pjg. This graph contains both K5 and K3 3 as minors, demonstrating how much structure
can be compressed from a larger graph. Figure 3 illustrates the constructions.

1.2 Obtaining K5 as a minor

Partition the vertices of the Petersen graph into five disjoint pairs, each forming an edge
of a perfect matching. Contracting these five edges yields a five-vertex graph. The remaining
edges between the matched pairs ensure that the resulting graph is K.



Petersen Graph Ks
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Figure 3: K5 and K33 are both minors of the Petersen graph

1.3 Obtaining K33 as a minor

Deleting any one vertex from the outer cycle leaves a 9-vertex graph from which a K33
minor can be obtained by contracting three edges that collapse the remaining structure into
two sets of three vertices.

These examples demonstrate how contraction can highlight deep structural properties that
are not apparent by considering subgraphs alone. This leads us to the idea of minor-closed
families.

Definition 1.3 (Minor-Closed Family). A family F of graphs is minor-closed if whenever
G € F and H is a minor of G, then H € F.

The set of planar graphs is the canonical example. Deleting edges or contracting edges of a
planar graph can never create a non-planar graph. Other examples of minor-closed families
include:

e Forests: For instance, the star K 4 is a forest. Any minor of this graph remains acyclic,
illustrating why the family of forests is minor-closed.

e Outerplanar Graphs: A standard example is a triangulated hexagon (a maximal out-
erplanar graph) where all vertices lie on the boundary of the outer face. This class is
characterized by having no K4 or Ks3 minors.

1.4 Forbidden Minors

The concept of minor-closed families naturally leads to the idea of forbidden minors.

Definition 1.4 (Forbidden Minors). For a minor-closed family F, the set of forbidden minors
(or obstruction set) is the set of graphs H such that H ¢ F, but every proper minor of H is
in F.



Planar Graph Forest (K1,4)  Outerplanar (Triangulated Cp)

Figure 4: Examples of Minor-Closed Families

By this definition, a graph G belongs to the family F if and only if G does not contain any
forbidden minors as a minor. For forests, the obstruction set is {K3}. Any graph without a K3
minor is a forest.

Family Forbidden Minors
Forests C3 (a single cycle)
Outerplanar Ky, Ko 3

Planar K5, K33

Linklessly Embeddable 7 Graphs

Table 1: Graph families and their forbidden minors

2 Historical Context and Origins

The study of graph minors grew out of early 20th-century work on graph embeddings,
specifically the problem of characterizing planar graphs. The first major result in this area was
not about minors, but about topological subdivisions.

Definition 2.1 (Topological Minor). A graph H is a topological minor of G if a subgraph of
G is isomorphic to a subdivision of H. A subdivision of H is formed by replacing some edges
of H with paths.

In 1930, Kazimierz Kuratowski published his celebrated theorem characterizing planarity
based on this concept.

Theorem 2.1 (3, Kuratowski). A graph G is planar if and only if it does not contain a subgraph
that is a subdivision of K5 or K3 3.

This theorem was a landmark achievement, but the concept of subdivisions is complex to
work with. A subdivision of K5 can look very different from Kj itself. In 1937, Klaus Wagner
introduced the edge contraction operation and provided a different, simpler characterization of
planarity [9]. This is the result that truly founded graph minor theory.

Theorem 2.2 (9, Wagner). A graph G is planar if and only if it does not contain Ks or K33
as a minor.



K K33
Figure 5: The two forbidden minors for planar graphs

The minor relationship is more general than the subdivision relationship. If G contains a
subdivision of H, then G also contains H as a minor (one can contract the internal vertices of
the paths). The converse is not true in general. However, for K5 and K33, the two conditions
are equivalent: a graph has a K5 or K33 minor if and only if it has a K5 or K33 subdivision
[1]. Wagner’s formulation, however, proved to be far more extensible and led to a new wave of
inquiry.

The deep connection between graph structure and the minor relation was further highlighted
by the Hadwiger Conjecture in 1943 [2].

Conjecture 2.3 (Hadwiger’s Conjecture, 1943 (2, Hadwiger)). For every integer k > 1, if a
graph G has no Ky minor, then G is (k — 1)-colorable.

This conjecture, if true, would be a significant generalization of the Four Color Theorem.
e For k = 4, it states that if G has no K4 minor, it is 3-colorable. This is known to be true.

e For k = 5, it states that if G has no K5 minor, it is 4-colorable. In 1937, Wagner proved
that this statement is equivalent to the Four Color Theorem [9]. Since the Four Color
Theorem was proven in 1976 (with subsequent formal verification), the & = 5 case of
Hadwiger’s Conjecture is also true.

e For k = 6, the conjecture states that a graph with no Kg minor is 5-colorable. This was
proven by Robertson, Seymour, and Thomas in 1993 [8], using techniques related to the
Four Color Theorem.

For k > 7, the conjecture remains one of the most significant open problems in graph theory.
The persistence and difficulty of this conjecture demonstrated that the minor relation was tied
to fundamental properties of graphs, motivating decades of research that culminated in the
work of Robertson and Seymour.

3 Wagner’s Theorem

Wagner’s Theorem (Theorem 2.2) is the cornerstone of graph minor theory. It provides a
simple and elegant characterization for the infinite family of planar graphs. The power of the
“if and only if ” nature. It is clear that K5 and K33 are not planar, and
since planarity is a minor-closed property, any graph containing them as a minor also cannot
be planar. The difficult part is proving the other direction: that every non-planar graph must
contain one of these two graphs as a minor.

theorem lies in its

3.1 Proof Sketch of Wagner’s Theorem

A full proof of Wagner’s theorem is highly non-trivial and relies on deep structural results.
One common approach involves Kuratowski’s other theorem about 3-connected graphs, but



a more direct proof route, developed by Wagner himself [9], relies on the concept of graph
connectivity and minimal counterexamples. We provide a brief sketch of the ideas involved.

The proof proceeds by induction on the number of vertices. We assume the theorem holds
for all graphs with fewer vertices than G. We can also assume G is a minimal non-planar graph,
meaning G is not planar, but every proper minor of G is planar. If G is such a graph, it must
not have K5 or K33 as a minor (otherwise, a proper minor of G would be K5 or K33, which
are non-planar, contradicting minimality). The goal is to show that the only such graphs are
K5 and K33 themselves.

1. Connectivity: A minimal non-planar graph G must be 3-connected. If G had a 1- or
2-vertex cut, we could decompose G into smaller graphs G1,G>. If G is non-planar, at
least one of G or GGo must be non-planar. This non-planar component would be a proper
minor of G, and by induction, would contain a K5 or K33 minor, which would also be a
minor of G.

2. Wagner’s Lemma: The core of the proof is a structural lemma by Wagner. It states
that any 3-connected graph G that does not contain a K5 minor can be constructed in a
specific way. Such graphs can be formed by repeatedly pasting simpler graphs together
along triangles, an operation known as a 3-sum. A 3-sum of two graphs G; and G» is
obtained by identifying a triangle in G; with a triangle in G2, possibly deleting some of
the resulting parallel edges. For instance, if G contains triangle {a, b, ¢} and Gg contains
triangle {x,y, 2z}, the 3-sum merges these by identifying a with z, b with y, and ¢ with
z, creating a single shared triangular structure. This operation glues the graphs together
along a 3-cycle while preserving 3-connectivity.

3. The Final Step: The proof then shows that any 3-connected graph G built this way,
which also does not have a K33 minor, must be planar.

Therefore, if G is a 3-connected graph that is non-planar, it must contain either a K5 minor
or a K33 minor. This sketch glosses over significant technical detail, but it illustrates the
strategy: using connectivity to constrain the structure of a minimal counterexample.

The significance of Wagner’s Theorem is not just its result, but its method. It provided a
finite basis for the property of planarity. It begged the question: what other graph properties
have a finite forbidden minor characterization?

e The family of outerplanar graphs is characterized by forbidding K, and K 3.

e The family of graphs that are apex (planar after deleting one vertex) is also known to
have a finite, though very large, set of forbidden minors.

For decades, it was an open question whether every minor-closed family of graphs had a finite
forbidden minor characterization.

4 The Graph Minor Theorem

This question was answered definitively by Neil Robertson and Paul Seymour in a series
of 20 papers spanning over two decades (1983-2004), collectively known as the Graph Minors
series. Their main result, the Robertson-Seymour Theorem (or Graph Minor Theorem), is one
of the deepest and most profound results in all of combinatorics.

The theorem is not usually stated in terms of forbidden minors, but rather as a statement
about the ordering of graphs.

Definition 4.1 (Well-Quasi-Ordering). A partial order < on a set S is a well-quasi-ordering
(WQO) if, for any infinite sequence of elements s, $2, 83, ... from S, there exist indices i < j
such that s; < s;.



A WQO does not contain any infinite antichains (an infinite set of pairwise incomparable
elements). For intuition, a simple example of a well-quasi-ordering is the natural numbers under
the usual order <: any infinite sequence of natural numbers must contain an increasing pair, so
no infinite antichain exists.

The Robertson-Seymour Theorem states that the minor relation is a WQO on the set of all
finite graphs.

Theorem 4.1 (Graph Minor Theorem, 2004 (6, Robertson and Seymour)). The set of all finite
graphs is well-quasi-ordered by the graph minor relation <.

This theorem is non-constructive in the sense that its proof does not provide a general
method for finding the pair 4,j. It merely proves that such a pair must exist. The proof is
incredibly complex, running over 500 pages, and relies on developing a massive new structural
theory for graphs.

4.1 The Forbidden Minor Characterization

The power of this WQO result becomes apparent when we consider what it means for minor-
closed families: if no infinite sequence of graphs can be pairwise incomparable under the minor
relation, then the set of minimal obstructions for any minor-closed property must be finite. This
leads directly to the following corollary.

Corollary 4.2. Every minor-closed family of graphs F can be characterized by a finite set of
forbidden minors O.

Proof Sketch of Corollary 4.2 from Theorem /.1

Let F be a minor-closed family of graphs. Let O be the set of all minimal graphs that are
not in F. That is, H € O if H ¢ F, but every proper minor of H is in F. By definition, F is
exactly the set of graphs that do not contain any graph from O as a minor. We need to show
that O is finite.

Suppose, for the sake of contradiction, that O is infinite. Let O = {H;, Ho, Hs,...} be an
infinite sequence of distinct graphs from O.

By the Robertson-Seymour Theorem (Theorem 4.1), the set of finite graphs is well-quasi-
ordered by the minor relation. Therefore, there must exist indices ¢ < j such that H; < H;.

But Hj is in the obstruction set O, which means it is a minimal graph not in . And H; is
a proper minor of H; (it must be proper, as the Hj, are distinct). Since H; is minimal, every
proper minor of H; must be in F. This means H; must be in F. However, H; is also in the set
O, which means H; ¢ F. This is a contradiction.

Therefore, our initial assumption that O is infinite must be false. The obstruction set O
must be finite.

The significance of this result is hard to overstate. It is a meta-theorem that proves the
existence of a finite characterization for countless graph properties, even ones no one has studied
yet. For any property P that is hereditary under minors (e.g., being embeddable on a torus,
being a linkless embedding in 3D space, etc.), Robertson and Seymour’s Corollary [6] guarantees
that there is a finite list of forbidden graphs that defines P.

4.2 Graph Structure and Tree-Width

The proof of the Graph Minor Theorem is not just a single argument, but the development
of an entire structural graph theory. A central concept created for the proof is tree-width.

Definition 4.2 (Tree-Width). The tree-width of a graph G is the smallest width of any tree
decomposition of G. A tree decomposition of GG is a tree T" where each node contains a subset
of V(G) (called a bag), such that:



1. Every vertex of G appears in at least one bag
2. For every edge {u,v} in G, some bag contains both v and v
3. For each vertex v € V(G), the bags containing v form a connected subtree of T'

The width of a decomposition is the size of its largest bag minus one. Intuitively, tree-width
measures how tree-like a graph is.

Graph: Cy Tree Decomposition

a

Width = 2

Figure 6: A cycle Cy and its tree decomposition of width 2

Examples:

e A tree has tree-width 1 (each bag contains an edge)
e A cycle C}, has tree-width 2
e Ak x k grid has tree-width k

e A complete graph K, has tree-width n — 1

A major part of the Robertson-Seymour proof, often called the Grid Minor Theorem,
shows that any graph with sufficiently large tree-width must contain a large grid graph as
a minor [7|. Specifically, for any k, there exists a function f(k) such that every graph with
tree-width at least f(k) contains the k X k grid as a minor.

A second key part involves showing that any graph G that does not have a specific minor H
(i.e., is H-minor-free) must have a specific structure. The structure theorem states that any
such graph G can be decomposed into a tree-structure of graphs that are almost-embedded on
a simpler surface (a surface on which H cannot be embedded) [6]. This provides a structural

characterization: H-minor-free graphs have bounded complexity relative to the surface structure
of H.

5 Applications

The Graph Minor Theorem is not just a theoretical curiosity; it has profound implications
for our understanding of graph properties and their decidability, even though the proof itself is
non-constructive.

5.1 Algorithmic Implications

A major consequence of the Graph Minor Theorem is that it establishes the decidability of
membership for all minor-closed graph families.

Robertson and Seymour proved that for any fixed graph H, testing whether a given graph G
has H as a minor (H < G) can be done in polynomial time. Specifically, the time complexity is
O(n?) for a graph G with n vertices. This result, combined with Corollary 4.2, yields a striking
meta-theorem:



Theorem 5.1 (7, Robertson and Seymour). For any minor-closed family of graphs F, there is
a polynomial-time algorithm to test if a graph G belongs to F.

This is a powerful and far-reaching result. It guarantees that questions like “Is this graph
planar?”, “Is this graph embeddable on a torus?”, and infinitely many other structural properties
are decidable in polynomial time.

However, there is an important caveat: the theorem is non-constructive. While the Graph
Minor Theorem guarantees that the obstruction set O is finite, it does not provide a method to
find O explicitly. Even for relatively simple families, the obstruction set can be enormous. For
instance, while linklessly embeddable graphs are characterized by exactly 7 minimal forbidden
minors [5], the obstruction set for graphs embeddable on a torus is known to contain more
than 17,000 forbidden minors [4]. This demonstrates the dramatic gap between theoretical
decidability and practical computability.

Despite this limitation, the theorem represents a fundamental contribution to structural
graph theory, establishing that the elegant characterization of minor-closed families by forbidden
minors translates directly into algorithmic tractability.

Conclusion

The theory of graph minors offers a profound and unifying perspective on the structure of
graphs. It elevates the simple, intuitive operations of deletion and contraction into a powerful
ordering relation. This framework, first hinted at by Wagner’s elegant characterization of planar
graphs [9], transforms the complex topological problem of planarity into a simple check for two
forbidden structures, K5 and K3 3.

The full potential of this perspective was realized in the monumental Graph Minor Theorem
by Robertson and Seymour [6]. By proving that the set of finite graphs is well-quasi-ordered
under the minor relation, they showed that every minor-closed property from planarity to
embeddability on any fixed surface is characterized by a finite list of forbidden minors.

This result fundamentally changed the landscape of structural graph theory. It guarantees
the existence of finite characterizations for an endless number of graph families, while the deep
structural theory developed for its proof (such as the concept of tree-width) has become a field
of study in its own right. Furthermore, its algorithmic consequences, while non-constructive,
provide a sweeping guarantee of polynomial-time decidability for all minor-closed properties.

From Wagner’s initial insight to the comprehensive theory of Robertson and Seymour, the
study of graph minors has demonstrated that by asking simple questions about how graphs
relate to each other, we can uncover the deepest and most fundamental principles of their
structure.
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