Why Comparison-Based Sorting Has an (nlogn)
Lower Bound

Manish Acharya

1 Introduction

Sorting is one of the most fundamental problems in computer science. Given a sequence of n
elements, the task is to rearrange them into nondecreasing order. Over decades of study, a
wide variety of sorting algorithms have been developed, including insertion sort, merge sort,
heapsort, and quicksort.

Among these algorithms, a striking dichotomy appears. Simple algorithms such as insertion
sort may require ©(n?) time in the worst case, while more sophisticated algorithms like merge
sort and heapsort achieve a worst-case running time of O(nlogn). A natural question arises:

Is it possible to sort faster than O(nlogn) in the worst case?

In this note, we explain why the answer is no for a large and important class of algorithms
known as comparison-based sorts. We present a clean and rigorous argument showing that any
comparison-based sorting algorithm must perform (nlogn) comparisons in the worst case.

The proof relies on a simple but powerful abstraction: the decision-tree model. This model
allows us to translate the problem of sorting into a combinatorial question about binary trees
and permutations.

2 The Comparison Sorting Model

We begin by clarifying the computational model under consideration.

Definition 1 (Comparison Sort). A comparison sort is a sorting algorithm that obtains in-
formation about the input sequence solely by comparing pairs of elements. FEach comparison
determines whether one element is less than, equal to, or greater than another.

Importantly, comparison sorts do not inspect the numerical values of elements directly or exploit
any special structure of the keys. Algorithms such as insertion sort, merge sort, heapsort, and
quicksort all fall into this category.

Since we are proving a lower bound, we may assume without loss of generality that all input
elements are distinct. If a lower bound holds for inputs with distinct elements, it also applies
when duplicate elements are allowed.

Under this assumption, comparisons of the form a; = a; never occur, and each comparison can
be treated as a binary question:
a; < a; or a;> aj.



3 The Decision Tree

(1,3,2) (3,1,2) (2,3,1) (3,2,1)

Figure 1: A decision tree for a comparison-based sorting algorithm on three distinct elements,
inspired by the decision-tree illustration in Introduction to Algorithms [CLRS09]. Each internal
node represents a comparison a; < a;, and each leaf corresponds to a permutation of the input
elements.

To reason about all possible executions of a comparison sort, we model the algorithm as a
decision tree. Figure [l illustrates this abstraction for a sorting algorithm operating on three
distinct elements.

Definition 2 (Decision Tree). A decision tree for a comparison sort on n elements is a full
binary tree with the following properties:

e Fach internal node is labeled by a comparison i : j, representing a test of whether a; < aj;.

e The left child corresponds to the outcome a; < aj, and the right child corresponds to
a; > aj.

e FEach leaf is labeled by a permutation (w(1),7(2),...,m(n)), indicating the final ordering

ar(1) < Ar(2) < 000 < Ap(n)-

An execution of the sorting algorithm on a particular input corresponds to following a single
path from the root of the decision tree to a leaf, determined by the outcomes of the comparisons
performed.

Crucially, the decision tree captures only the comparisons made by the algorithm. All other
aspects of computation—data movement, control flow, and memory access—are ignored. For
comparison sorts, this abstraction is sufficient to reason about worst-case running time.

4 Why There Must Be Many Leaves

A correct sorting algorithm must be able to handle every possible input ordering.

Since the n input elements are distinct, there are exactly n! possible permutations of the input.
Each permutation represents a different total ordering of the elements.



Lemma 1. Every correct comparison sort on n distinct elements must have at least n! reachable
leaves in its decision tree.

Proof. Each leaf of the decision tree corresponds to a specific ordering of the input elements.
For the algorithm to be correct, it must be able to produce the correct sorted order for every
permutation of the input.

Therefore, for each of the n! permutations, there must exist at least one root-to-leaf path whose
sequence of comparisons is consistent with that permutation. In other words, every permutation
must appear as a reachable leaf of the decision tree.

Hence, the decision tree must have at least n! reachable leaves. ]

This observation is the combinatorial core of the lower bound: sorting requires distinguishing
among n! possible cases.

5 Height of the Decision Tree and Worst-Case Cost

The running time of a comparison sort is determined by how many comparisons it performs.

Definition 3 (Decision-Tree Height). The height of a decision tree is the length of the longest
root-to-leaf path.

In the decision-tree model, each internal node corresponds to exactly one comparison. Thus:
e The number of comparisons performed on a particular input equals the length of the
corresponding root-to-leaf path.
e The worst-case number of comparisons equals the height of the decision tree.

Therefore, to prove a lower bound on the worst-case running time of comparison sorting, it
suffices to prove a lower bound on the height of any decision tree with at least n! leaves.

6 Deriving the Lower Bound
We now connect the number of leaves in a decision tree to its height, which directly determines

the worst-case number of comparisons made by a sorting algorithm.

Lemma 2. A binary tree of height h has at most 2" leaves.

Proof. At each level of the tree, the number of nodes can at most double. Since the root is at
level 0, a tree of height h has at most 2" leaves. O

Recall that any correct comparison-based sorting algorithm must be able to distinguish among
all n! permutations of the input, and therefore its decision tree must have at least n! leaves.
Combining this requirement with the previous lemma, we obtain

n! < 2.

Taking logarithms (base 2) of both sides yields

h > log(n!).



To convert this bound into a more familiar asymptotic form, we use a standard approximation
for the factorial function.

Lemma 3.

log(n!) = ©(nlogn).

Proof. Using Stirling’s approximation,

and taking logarithms gives
log(n!) = nlogn —nloge + O(logn).

Thus, log(n!) grows on the order of nlogn. O

Substituting this estimate into the height bound completes the argument.

Theorem 1. Any comparison-based sorting algorithm on n elements requires Q2(nlogn) com-
parisons in the worst case.

Proof. As shown above, the decision tree of any correct comparison sort must have height at
least log(n!) = Q(nlogn). Since the height of the decision tree equals the worst-case number of
comparisons performed by the algorithm, the result follows. O

Corollary 1. Merge sort and heapsort are asymptotically optimal comparison sorts.

Proof. Both algorithms run in O(nlogn) time in the worst case, matching the Q(nlogn) lower
bound. No comparison sort can asymptotically outperform them. O

7 Conclusion

The Q(nlogn) lower bound for comparison-based sorting is a foundational result in algorithm
analysis. It follows from a simple observation: sorting requires distinguishing among n! possible
input orderings, while each comparison provides only limited information.

By modeling comparison-based sorting algorithms as decision trees, this intuition becomes a
precise mathematical argument. The result explains why no comparison-based algorithm can
asymptotically outperform O(nlogn) sorting.

It is important to note that this lower bound applies only within the comparison model. Al-
gorithms such as counting sort and radix sort achieve linear-time performance by exploiting
additional assumptions about the input and therefore do not contradict the bound.

References

[CLRS09] T. H. Cormen et al., Introduction to Algorithms, 3rd ed., MIT Press, 2009.
[KT06] J. Kleinberg and E. Tardos, Algorithm Design, Pearson, 2006.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.



	Introduction
	The Comparison Sorting Model
	The Decision Tree
	Why There Must Be Many Leaves
	Height of the Decision Tree and Worst-Case Cost
	Deriving the Lower Bound
	Conclusion

